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The solution of the heat-conduction equation is obtained for an anisotropic 
semiinfinite medium heated by a mobile heat source. The temperature fields 
of various types of mobile source are analyzed, with a view to developing 
a method of determining the heat conduction of anisotropic media. 

One means of nondestructive determination of the thermal properties of materials is 
to use a measurement method based on mobile sources of thermal energy- the scanning 
method [i]. The introduction of mobile sources O f thermal energy into the practice 
of thermophysical measurements and the use of modern means of heating and temperature 
recording permits the creation of a set of different contactless procedures for determining 
the thermal properties of materials (including hot rocks) on the basis of the scanning 
method [i, 2]. 

The study of the anisotropy in the thermal properties of materials occupies a special 
position here. It is known that traditional methods and means of measurement used pre- 
viously to determine the heat conduction of anisotropic minerals [3-5] do not offer the 
possibility of large-scale measurement, because of their inadequate productivity, as well 
as the need for preliminary mechanical treatment of the samples (for example, single 
crystals of minerals), which leads to partial or total destruction of the samples. Accord- 
ingly, there is a pressing need to create effective methods for the contactless determina- 
tion of the heat conduction of anisotropic methods without rigid requirements on their 
geometric shape and size. 

Consider a semiinfinite anisotropic solid medium with an adiabatic boundary surface, 
on which an arbitrary mobile source of thermal energy acts; the source moves over the 
boundary surface at constant velocity v. The general solution of the differential heat- 
conduction equation for the given case may be obtained using Green's functions [6]. 
Introducing the mobile coordinate system OX'Y'Z', with its origin at the instantaneous 
position of the point source of thermal energy and the axes X', Y', Z' along the principal 
axes of the heat conduction of the medium (Fig. i), the equation for the Green's function 
G(x' y' z' t) in this system takes the form 

--( 020 020 020 ) vO+ 2Q o___@_o = 1 ;~ § ~ - -  + ;q - -  + v - -  6 (t) 6 (x') 6 (y') 6 (z'), 
8t cp d (x') z 8 (y')~ O (z') z c9 (1) 

where Xz, X2, Xs are the principal thermal conductivities of the medium in the direction 
of the axes X', Y', Z', respectively; Q is the energy of the instantaneous source. The 
factor 2 in the last term on the right-hand side of Eq. (i) takes account of the adiabati- 
city of the boundary surface of the medium. 

Solving Eq. (i), the Green's function in the coordinate sYstem OX'Y'Z' is obtained: 

, f Cp (X') 2 (y')2 
~(~', y', ~,  t)_- 2Q(~p),/, exp/--~7- [[--17 +--17 + 

(z') 2 ] coy nx,x'  nu,y'  + ~ 
+ zs J 2 xl + z~ ;q 4 \ z~ + +-- i7-~ (2)  
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Fig. i. Semiinfinite anisotropic medium heated by a mobile 
point energy source: i) energy source; 2) temperature 
recording element; 3) anisotropic medium; n, direction of 
motion of energy source and temperature recording element. 

Fig. 2. Heating a semiinfinite anisotropic medium with a 
mobile linear source of thermal energy. Notation as in 
Fig. i. 

where n x, = Vx,/V , ny, = Vy,/V, n z, = Vz,/V are the directional cosines of the unit vector 
n = V/V. 

For practical applications, it is of interest to have an expression for the Green's 
function in the mobile coordinate system OXYZ moving with the point energy source, which 
is arbitrarily oriented relative to the principal axes of heat conduction (Fig. i). Con- 
version to the coordinate system OXYZ gives 

G(x, y, z, t )= 2Q(cP)I/~ e x p [ - - c p ( M +  L )] (4~t)~/2 (~1~3)1/2 - -~  + Nt , (3) 

where 

L =  (ri')2 + (rj')2 + 2 f  ~ ,rk', , 
kl ~2 )~a 

(ri') (hi') (rj') (nj') (rk') (nk') 
M = v  + v  + v  , 

2~1 2)~z 2~3 
N = v  2 (ni')~ -{-v 2 (hi')2 ~ v  2 (nk')2 , 

4k, 4k2 4~ 
(4) 

r = xl + yJ + zk is the radius vector of an arbitrary point of the medium in the coordinate 
system OXYZ. The coordinates (x, y, z) of vector r in the coordinate system OXYZ are 
related as follows to its coordinates (x', y', z') in the coordinate system OX'~Y'Z ' [7]: 

x =  ~ x ' +  13~y'+ ~z ' ,  

y = r162 ~uy'-~- ~yz', 

z = =~x'+ ~ y ' +  %,/, 
(s) 

where am, 8m, T m (m = x, y, z) are the directional cosines of the axes X, Y, Z relative to 
the principal axes of heat conduction of the medium X", Y', Z'. 

In heating the surface of the given medium by an arbitrary mobile source of thermal 
energy with a power density q(x, y, z, t), the temperature field of the medium is given by 
the relation [6] 

t 

y,  o = ; ,  tSc(  - i  (6) 

where S is the geometric focus of the points at which heat liberation occurs (the area of 
the energy source); S is determined by the type of surface source. 
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Using Eqs. (3)-(6), the temperature fields arising in a semiinfinite anisotropic medium 
on heating by mobile energy sources of the types most often encountered in thermophysical 
investigation -- continuously acting point and linear sources [i] -- may be considered. 

Continuously Acting Point Source of Thermal Energy 

Suppose that at time t = 0 a point source of thermal energy with constant power W 
begins to act on the surface of a semiinfinite anisotropic medium. In the coordinate 
system OXYZ (Fig. I), in accordance with Eqs. (3)-(6), the temperature field of the medium 
is 

w exp (-- toM), 0 (x, y, z, t) = a / 2  ()~,s)1/2L1/2 

exp (~  ~ 2  kz~-2) d~, 
(cpL/t) I/2 

(7) 

where 

I ~2= cP L (t___'t)-~, k=__cp(LN)'/~. (8) 
4 2 

In t h e  p r a c t i c a l  u se  o f  m o b i l e  e n e r g y  s o u r c e s  in  t h e r m o p h y s i c a l  i n v e s t i g a t i o n s ,  h e a t -  
i ng  c o n d i t i o n s  d e s c r i b e d  by t h e  q u a s i - s t e a d y  a p p r o x i m a t i o n  a r e  most  w i d e s p r e a d  [1,  2 ] ;  t h i s  
p e r m i t s  s i g n i f i c a n t  s i m p l i f i c a t i o n  i n  t h e  r e l a t i o n s  f o r  t h e  t e m p e r a t u r e  f i e l d .  P a s s i n g  to  
t h e  l i m i t  a s  t § = in  Eq. ( 7 ) ,  t h e  r e l a t i o n  f o r  t h e  s t e a d y  f i e l d  o f  l i m i t i n g  e x c e s s  t e m p e r -  
a t u r e  i n  q u a s i - s t e a d y  h e a t i n g  c o n d i t i o n s  i s  o b t a i n e d  f o r  a s e m i i n f i n i t e  a n i s o t r o p i c  medium 
in  t h e  m o b i l e  c o o r d i n a t e  s y s t e m  OXYZ 

W 
O(x, y, z ) :  2~(~1~2~)1/~LI/2 exp[--cpM--cp(LN)l/?]. (9) 

In the experimental realization of the methods of investigating the heat conduction 
of anisotropic solids described below, interest centers on the distribution of the limiting 
excess temperature at the line of heating of the boundary surface of the medium behind the 
energy source relative to its direction of motion (Fig. i). This distribution, according 
to Eq. (9), is determined by the formula 

2~ (~1~2~s)a/2L 1/2 - 2~d (~1Z2~s) 1/~ + Z~ ~ (i0) 

where d is the distance from the point energy source to the point of temperature recording 
on the line of heating behind the source with coordinates x = -nxd , y = -nyd, z = -nzd. 
Analysis of Eq. (9) shows that the given temperature field (at specified w, kx, k2, ks) is 
determined only by the direction n of energy source motion and the distance d from the 
source to the point of temperature recording and, as in the case of heating an isotropic 
medium, does not depend on the source velocity [8]. 

In the particular case when the direction of motion of the point energy source coin- 
cides with one of the axes of the mobile coordinate system OXYZ, for example, with the X 
axis (when y = z = 0, d = [x[, n x = i, ny = n z = 0), Eq. (i0) takes the form 

0 (x) = w 

If the direction of energy-source motion coincides with one of the principal axes of 
heat conduction of the medium, for example, with the X' axis, however, the distribution of 
limiting excess temperatures of the boundary surface of the medium at the heating line 
behind the energy source is described by the simplest expression [9] 
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W o (x') = ~/2 x' (12) 2~( ,~)  I I 

When Xt = la = k~ = k, Eq. (12) coincides with the expression for the distribution of 
linear excess temperatures of the boundary surface of a semiinfinite isotropic medium at 
the heating line behind the mobile point energy source [8]. 

Continuously Acting Linear Source of Thermal Energy 

Consider the temperature field of a semiinfinite anisotropic medium, at the surface 
of which there acts a mobile linear source of thermal energy with constant linear power 
density q switched on at time t = 0. 

Suppose that axis Y of the mobile coordinate system OXYZ coincides with the linear 
energy source moving over the boundary surface in an arbitrary direction n at a constant 
velocity v (Fig. 2). In quasisteady heating conditions (t + =), an expression for the 
field of limiting excess temperatures of the heated medium follows from Eqs. (3)-(5) 

0(x,  z ) =  
�9 2 ~  (;q;%~.~)~/~ 

.[,,,. exp (-- cpE) 
_ ( A g ~ + B ! t - } ' C )  ' /~  ' . . . . . . . . . . . . . . . . . . . .  exp{--cp[Dy+N~/2(Agzq-BY + C)~ /= ] }dy .  (13) 

where 

E= v 
2L~ 

Integrating Eq. 

2 2 2 

A = ~t 3,~ ~ ' 

23'~ (x?~+ z~,~); B = f i~ '  (xcz~+ z~3 + (xt%,+ zl33 + - ~  
Lt 

1 (x~z~+ z<zD~+ 1 c = ~1 --~ (xl~+ zl~3 ~ + (x'e~+ z-~3'; 

D =  v~g (hi ' )+  v~v vyg (nk'); 

(xo~,q-- zm,) (ni') q- ~ (xl3,q-- z[3z)(nj ) + ~ (~? --}_ Z?z)(nk,). 

(13) and using the tabular integral [i0] 

-~  (u2_[_a2)l/2 exp [-- bu --  g (u2+a~) l/e] = 2Ko [a (g2 b2)1/2], 

(14) 

(Z5) 

where KoIa(g2--b2) ll~] i s  a MacDonald f u n c t i o n  of the  argument a(g~'b2) 1/~, a =  [(C/A)-  
(B/2A)2]'~ b =cpD, g = cp(NA)1/Z , a f i n a l  exp re s s ion  i s  ob t a ined  for  the  f i e l d  of  l i m i t i n g  
excess temperatures of a semiinfinite anisotropic medium at whose surface there acts a 
continuous mobile linear source of thermal energy 

cpBD Kolc p B 2 1/2 2 1 /2  0(x ,Z)=  q exp ( - - t o E + - - )  [ ~ - - (  (16) 

If the direction of motion of the energy source coincides with one axis of the coordi- 
nate system OXYZ, for example, the X axis (in this case, the boundary surface lies in the 
plane z = 0), the field of limiting excess temperatures of the heated surface is described 
by the relation 

O(x)= q exp - -  2A L Z1~,2 (~i~X~) 1/2A1/~ + 
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When the axes X, Y, Z of the mobile coordinate system coincide with the principal axes 
of heat conduction of the medium X', Y', Z', Eq. (17) takes its simplest form 

0 (x') = q cpx'v t c9[x'[v ), ( 1 8 )  

coinciding, when X, = X3 = ~, with the expression for the field of limiting excess tempera- 
tures of the boundary surface of a semiinfinite isotropic medium on which there acts a 
mobile linear source of thermal energy [8]. Using the well-known approximation [7] of the 
MacDonald function Ko(u) at large values of the argument (with an error of no more than 2~ 
when u > 5), a relation that is convenient in practical calculations is obtained for the 
temperature field of the surface of the given anisotropic medium behind the linear energy 
source, i.e., when x' < 0, z = 0: 

�9 ~ (X')~ q (~%3c9v Ix'l) -1/2.  (19) 

Using the relations obtained for the temperature fields of the mobile energy sources 
in anisotropic media, a series of methods may be developed for investigating the heat con- 
duction of anisotropic media, for example, single crystals of minerals and rocks. Their 
theoretical models will be considered in a separate work. 

NOTATION 

G, Green's function; ~i, ~2, 13, principal thermal conductivities of the anisotropic 
medium; i, j, k, basis vectors of the arbitrary rectangular coordinate system OXYZ; i', 
j', k', basis vectors of the coordinate system OX'Y'Z', the axes of which coincide with 
the principal axes of heat conduction of the anisotropic medium; 6(t), Dirac delta function; 
co, volumetric specific heat; n = v/v, unit vector of the scanning direction; v, source veloc- 
ity; Q, source energy; w, source power; q, power density of source; 8(x, y, z), limiting ex- 
cess temperature of medium; K0(u), MacDonald function; d, distance from source to temperature 
recording unit; ~, B, 7, directional cosines of vector in coordinate system OX'Y'Z'. 
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